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QOverview

 What is a Direct Electron Detector (DED)?

* Overview of DEDs in EPIC-TEM Facility

e Advantages for (S)TEM Applications
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Features of the Ideal Detector for (S)TEM

* Respond to every electron (Quantum efficiency)

* Does not respond where the electrons are not (Low Noise) — Detector Quantum Efficiency (DQE (f))
* Know the position of these electrons (Spatial Resolution) B DQE(s) = SST\;?M((SS))

 Knows when the electron was detected (Temporal Resolution)
* Knows how many electrons arrived (Linearity / Dynamic Range)

* Energy of every electron
e Momentum of every electron

* Spin of electron
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Traditional vs. Direct Electron Detection (DED) Camera

Traditional scintillator camera (CCD or CMOS) Monolithic Direct Electron Detection camera
Traditional cameras use a 1. Convert electrons to light Direct detection refers to using 1. Convertelectrons-to-light
scintillator to generate light 2. Transfer light a detector which is directly 2— TFransferlight
that is transferred to a 3. Detect light and convert to signal exposed to the e- beam to 3. Detect electrons and
sensor and detected 4. Electronically transfer signal and create a signal convert to signal

read-out to form image 4. Electronically transfer signal
and read-out to form image
e e
1. —
Scintillator
* 1) e scatter in low Z sensor
2 1:1 fiber optic * 2) Damage to pixel
) coupled
light transfer
é vvv V e scatter in high Z scintillator 4
3 CMOS

. * e backscatter from fiber optic 3. active detector Low Point Spread
* Scattering of light in fiber optic F . PSE
4. Readout . pjstortions from fiber optic 4 Readout unction ( )
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Performance of Traditional vs. DED Camera

 DQE is a function of sampling frequency, and is
amongst others dependent on dose rate and
accelerating voltage

* Nyquist frequency defines the max. spatial
frequency (or minimal resolution) that can be
measured by a detector. Minimal resolution = 2
x pixel size

* For a perfect detector, DQE = 1 for all spatial
frequencies
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Electron Counting in a Direct Electron Detector

* Each electron strikes the sensor creating a cloud of
charge that spans a few pixels

* The charge is collected in each pixel

* acomplex “centroiding” algorithm reduces the
multi-pixel charge to a single pixel
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Electron enters
Detector.

Electron signal is
scattered.

Charge collects in
each pixel.

——

Counting 1

Events reduced to
highest charge
pixels.
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Direct Detectors in the EPIC-TEM Facility s

JEOL ARM200CF (S)TEM JEOL JEM-ARM3O00F (S)TEM
K2 IS GIF Quantum K2

* The world’s first counting, high-
speed, large format cameras for in-
situ microscopy

e Large (3456 x 3456) field of view
* max. 3000 frames per second

* Synchronize frames for 4D

¢ 4k by 4k electron counting camera STEM applications via STEMx

e max. 1600 frames per second
¢ K2 direct detection sensor
¢ Dose fractionation mode for beam sensitive

Stela Hybrid-Pixel camera

materials = 300 kV/80 kV/60 kV/40 kV
e Quantum GIF + K2 leverages the counting = 0.22 nm TEM / 0.19 nm STEM resolution
* 200 kVv/80 kV/60 kV capabilities of the K2 camera (EELS acquisition) = K3 IS DED (Gatan)
* Aberration corrected (probe) = Stela Hybrid-Pixel DED (Gatan)
: 8(2)2 nm ?’;l'i/ll\/l res?lu'tlon GIF Continuum K3 with Stela = Updated with GIF Continuum (Gatan)
.23 nm resolution = 0.29 eV energy resolution (300 kV)

* 0.35eV energy resolution

* Dual SDD EDS detector (1.7sr)

e Simultaneous HAADF/BF/ABF

* Gatan Quantum Dual EELS
(Updated with K2 direct
camera)

e AXON drift-correction software

= Simultaneous imaging by HAADF/BF/ABF - Hybrid-Pixel counting camera

i SD,D holder / delivery system * 4D-STEM & diffraction imaging at
= Wide gap pole-EDS detector low kV
= Hummingbird gas piece allows for wide - 512 x 512 pixels

variety of in situ experiments (heating, liquid, > 16,000 fps

blasmgc,l r'*rf1echan|ca'l...) ¢ * High dynamic range for weak
AXON drift-correction software reflections
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(S)TEM Techniques Benefiting from Direct Electron Detectors

(in situ) TEM Imaging (Selected Area) Diffraction, CBED & MicroED

/ Apply Stimulus \

Applications: direct visualization of
biasing, heating, liquid, liquid He effects

Reciprocal Space
Data

Measure Materials
_Performance Metric

-

Applications: (3D) crystal structure,
Single CBED to measure specimen
thickness, lattice strain
measurements, point and space
group determination, phonon
structure, structure factor and
charge density, etc.

DED/

Watch!!

(in situ) 4D-STEM

(in situ) EELS and EFTEM

Applications:

EELS measurement

Information obtainable

Low-loss intensity

Local thickness, mass thickness

e- beam

—— Plasmon energy Valence-clectron density
m ] Plasmon peak shift Alloy composition
? Electron source Low-loss fine structure Dielectric function, JDOS
== Low-loss fingerprinting Phase identification
ii__: Core-loss intensities Elemental analysis
fzag — TEM sample ‘\’:I:'ni:;::“‘:;P:::::::I: ;::II::;I‘I:‘L"‘I:‘I|I:l‘:;;l.:::::1 Speimen
Chemical shift of edges Oxidation state, valency A
= Round lens L or M white-line ratio Valency, ma properties
= Extended fine structure Interatomic 1
- Bethe ndge (ECOSS) Bonding information
, \ — Viewing chamber
f= = Electron Tomography, SPA, Holography, etc.
| b | — 806 HARDF ( e \ Applications: 3D Direct e Detector
— 807 ADF . . .
' e DED ~ ~ visualization
system . . . . . . . . . .
' ’ . // \\ Applications: Virtual imaging, Orientation mapping, Strain mapping,
| 1 Electric/magnetic Electric/magnetic field mapping, Phase Contrast Imaging (DPC,
. i‘. field imaging, Ptychography), Fluctuation electron microscopy (medium-range ordering),

thickness, etc. Pair Distribution Function Mapping (short-medium range ordering etc.)

Specimen: Tylenol crystal
Diffraction image size: 512 x 512 pixels
Exposure per frame: 5 ms
Tilt range: £70°
Total acquisition time: 3 s
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DED advantage for Real Space Data Acquisition

 Examples using K3 IS
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TEM Imaging

Zeolite Covalent Organic Frameworks (COFs)
HO e@Q OH
HHTP HO OH

|

T Y YT ¥
Polycrystalline COF Film

2.1 e A-2s1 Dose Rate
14 e~ A2 Total Dose

0.74 e A2 s"1 Dose Rate
25 e~ A2 Total Dose

1. Castano, A. M. Evans, R. dos

Counting individual electrons allows you to collect high- Reis, V. P. Dravid, N. C. Gianneschi,
. and W. R. Dichtel. Chemistry of
quality images at even lower doses and dose rates Materials 2021 33 (4), 1341-1352
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In situ TEM — In Situ Staining Liposome
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K3 IS - 300kV K. Gnanasekaran, B. Chang, P. Smeets, N. Gianneschi, Nano Lett. 2020, 20, 6, 4292-4297
Dose rate 0.2 e- A251
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In situ TEM — ARM300F (K3 IS)

Technigue Manager
% | TEM Imaging

In situ TEM Data Acquisition

In-Situ . . . In-Situ Player
e D * Binning, camera size o
* Frame time (max. 75 fps full-frame) 0 10072 - 0214115 1320
K3 In-Situ Camera . . O
* Lookback: save to disk x s before any dynamic event CL0) » o R E

ﬂh:m 2NN 2048 1024 256
: =] .

S

& lookback s I Timelapse

In situ TEM Data Player
e Amount of frames / time :
* Change playback speed e S

Time

In-Situ Editor

B Cop Tre
In situ TEM Data Editor I Combine Frames
* Cropping / frame averaging
© seup x * Drift correction using image registration
(using imaging filters)
* Imaging filters
* Exporting video
(adding scalebar, timestamp)

E\'pn:nsure: s

Bxport As: Kill=s]
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In Situ EELS

* Insitu EELS showing the interaction between electron beam and gas molecules

Protochips Atmosphere 210 System attached on ARM 200CF

*  Pressure range: 760 Torr (101.3 kPa) to 1 Torr (0.13 kPa);
*  Flow range: 0.005 sccm to 1 sccm (ml/min); CO COZ Amorphous C
*  Temperature range: RT to 1000 °C with max 10 2C/s heating rate; A

*  Gas mixing: 0.01%-99.99% mixture of up to 3 non-corrosive gases;
*  Vapor allowable: water, methanol, ethanol, hexane, naphtha, etc; _,
*  Reaction gas Analyzer (RGA) attached f' |

Atmosphere Holder T i / t i o 1
B | \ S
- = | ! ] I Tk Y-
A i /
Atmosphere Controller . ! »
I’ / Y
. i

E-Chips T o "

e

1
\ t ‘
T T T

287.2eV  290.2 eV

Atmosphere Gas Delivery System

Drs. Kunmo Koo & Xiaobing Hu, in prep.
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DED advantage for Reciprocal Space Data Acquisition

* Examples using Stela Hybrid-Pixel Detector

\lit'msm} W
TODAY L
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Stela Hybrid-Pixel Direct Detector (ARM300F)

Advantages
phiia * Fast readout, with direct digitization
Ohmic contact — _J * Near zero read noise enables multi-pass
. slecirons o o j frame summing
Diode (Si typ) —» T I * Broad range of input count rates (high
e bond a— dynamic range; works also well at higher
~ 300 pm dose rates)

Pixal readout =—=
* Very sharp PSF at lower kVs

AL chip —

Limitations
Adapted from: Faregl, &, R B Mchulian, G . .
Cusarterly Reviews of Biophysics 44, {2011). * Physically large, small number of pixels
L .l e Poor PSF at high kVs

55 to 150 pum pixels
Ideal for diffraction applications!
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4D-STEM

Fluctuation Electron Microscopy (FEM) on niobium (Nb)-superconducting Strain Analysis across soft-hard interface in nacre
transmon qubits to assess medium-range ordering
s

. Interface

Fladial Drisriastion Functicn jeu )

Decreasing Nb;O. Content

Relative distance (nm)

Structure factor S(Q) RDF T
Drs. Xiaobing Hu & Paul Smeets, in prep.

1Q)-AQ) .
5(Q) l==—"Z%5 g(r) =1+ 372 pyr fu 1] x sin(Qr) dQ

"M 2023 Elucidating the Role of Nanoscale Organics in Natural

MICROSCORYE  Nanocomposite Materials, M&M 2023, Tuesday, 7/25 3-5pm

Minneapolis, MN - July 23-27

Mattia Checchin, Anna Grassellino, Roberto dos Reis, Vinayak P. Dravid, and Alexander Romanenko, ACS Nano 2022 16 (10), 17257-17262
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(In Situ) 4D-STEM & EELS (Multimodal)

* Onthe ARM300F = EELS and 4D-STEM datasets from the same region can be obtained (Multimodal)
e Various S| Acquisition within the same software platform
* One sample, one microscope session, one data format

Multidimensional Electron Microscopy in the STEM: Scanning
Diffraction and EELS Workshop

https://www.youtube.com/watch?v=12G1-t6bKKo

STEM Alignment STEM Alignment

Si Acquisition 51 Acquisition

A
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In Situ 4D-STEM & EELS (Multimodal)

* Heating experiment of Fe,0;-H,0 nanoparticles

e Cu(ll) reduces to Cu(0) with temperature (EELS), crystal structure change from monoclinic to hexagonal
Temperature

monoclinic monoclinic hexagonal

N UA N CE Dr. Liam Spillane, Gatan Ametek N OrthweStern
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Detector Performance

” g0 100KV p0 200 kV 300 KV
Camera I ! | I | | Max. Framerate
2100F - - -
ARM200CF/ARM300F
ARM?200CF/ARM300F

ARM300F
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DED Matchmaker for the ARM300F

(S)TEM Technique

EELS Mapping

Low-kV EELS

EFTEM imaging

Low-dose imaging

In-situ EFTEM

In-situ EELS

4D STEM / micro-ED

 Stela — High speed and high dynamic range
ideal for diffraction imaging at low kV

* K3 — High sensitivity, large pixel count ideal
for low-dose imaging and in-situ studies

Northwestern

EXPLORING INNER SPACE



Just Installed on the JEOL ARM200CEF...

Ideal for 4D-STEM applications

Number of pixels (W x H) 192 x 192
Active area (W x H) 20 x 20
[mm?]
Pixel size (W x H) 100 x 100
[pm?]
Sensor material Silicon (Si) or high-Z
Energy range B
keV] 30 - 300
|
Frame rate (max.) 120,000 '
[Hz] '
Count rate (max.) 108
[el/s/pixel]

Detective Quantum Efficiency, at 80 keV - 0.82 | at 200 keV -
DQE(0) 0.75 | at 300 keV - 0.75
Detector mounting Retractable
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Contact Info

Northwestern University Atomic and
Nanoscale Characterization Experimental Center

{NUANCE

Paul Smeets, PhD

2145 Sheridan Road Research Assistant Professor
Tech Institute, AB Wing #AG96 TEM/FIB Manager
Evanston, lllinois 60208

Email: paul.smeets@northwestern.edu
www.nuance.northwestern.edu Phone: +1(847) 491-7807
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