Tech Talk

A brief introduction to energy dispersive spectrum (EDS) and electron energy loss spectrum (EELS)

Xiaobing Hu

The NUANCE Center, Northwestern University

Department of Materials Sciences and Engineering, Northwestern University

May 20, 2021

Soft and Hybrid Nanotechnology Experimental Resource

Principles of EDS and EELS

>Key points/parameters for EDS

> Application of EDS

> Key points/parameters for EELS

Application of EELS

SHV

Quantification methods of EDS and EELS will be covered in future lectures.

Northwestern

Principles of EDS and EELS

Electron Matter Interaction

SH

Soft and Hybrid Nanotechnology
 Experimental Resource

Northwestern

> X-ray emission

- An ionized atom does not have to lose energy by giving off a characteristic X-ray but can emit an Auger electron instead.
- Fluorescence yield (ω) describes the probability of X-ray versus Auger emission.

$$ω = \frac{Z^4}{a+Z^4}$$
 (for K shell, a ~10⁶)
For C-K edge, $ω ~ 10^{-3}$;
For Ge-K edge, $ω ~ 0.5$;

That's why EDS is not the best way to analyze the light elements such as Li, Be and B.

Bremsstrahlung X-rays (braking radiation)

- When electrons interact with the Coulomb field of nucleus, there will be substantial momentum changes and it may emit an X-ray during this process.
- The approximate expression used is: $N(E) = \frac{KZ(E_0 - E)}{E}$ N(E): number of bremsstrahlung photons with

energy E;

Z: atomic number; K: Kramers' constant;

E0: electron energy

X-ray energy

Bremsstrahlung X-rays contributes to the continuum background.

 \succ Energy resolution (\sim 110–140 eV)

 $R = (P^2 + I^2 + X^2)^{1/2}$

- P: Full width at half maximum (FWHM) of a randomized electronic-pulse generator;
- X: FWHM-equivalent attributable to detector leakage current and incomplete charge collection;
- I: Intrinsic line width of the detector
 - $I = 2.35^{*}(F^{*}\epsilon^{*}E)^{1/2}$

(F: Fano factor of the distribution of X-ray counts from Poisson statistics; ε: the energy to create an electronhole pair in detector; E: the energy of the X-ray line.)

Very low and major limitation

Estimate the energy resolution of Si detector:

- Assume there is no leakage, and the electronics produce no noise (P=X=0)
- F = 0.1; ε = 3.8 eV; for Mn Kα line, E = 5.9 keV
- R = I = 111 eV

Spatial resolution

The spatial resolution (R) of EDS is governed by the beam-specimen interaction volume, which is a function of the incident-beam diameter (d_t) and the beam spreading (b).

Experimental Resource

$$\mathsf{R} = \frac{d + R_{max}}{2} ; R_{max} = (b^2 + d_t^2)^{1/2}; b = 8 \times 10^{-12} \frac{Z}{E_0} N_v^{1/2} t^{3/2}$$

Z: atomic number; E_0 : incident electron energy in keV N^{ν} : number of atom/m³ t: foil thickness

 $d_t = (d_g^2 + d_s^2 + d_d^2)^2$ $d_g: \text{ beam spread due to gun}$ $d_s: \text{ beam spread due to spherical aberration}$ $d_d: \text{ beam spread due to diffraction limitation}$ $d_d: \text{ beam spread due to diffraction limitation}$ MRSECNorthwestern

Incident

Interface

ND ENGINEERING

- \succ Time constant (τ) Usually using a shortest τ to maximize the count rate
- τ (\sim 5-100 µs) is the time allowed for the analog processor to evaluate the magnitude of the charge pulse.
- Shorter τ will give a larger counting rate but will give a greater error in assignment of a specific energy to the pulse (poorer resolution).

Dead time

• Dead time is when the detector is not counting X-rays but processing the previous photon.

Dead time in % = $(1 - \frac{output \ count \ rate \ (Rout)}{input \ count \ rate \ (Rin)})*100\% = (\frac{clock \ time \ -live \ time}{clock \ time})*100\%$ Live time is when the detector is ready to detect an X-ray and not processing any signal;

- Excess of 50-60% indicating the detector is saturated with X-rays and collection becomes increase inefficient. You should find thinner area and reduce the beam current.
- Less than 3% indicating the X-ray signal is not enough. This is the normal case for TEM sample.

 \succ Collection angle (Ω) The larger the better.

Solid angle Ω = A*cosδ/S² (usually <0.5 sr)
 A: the active area of the detector (30-100 mm²);
 δ: angle between the normal to detector face and a line from detector to specimen; (normally, δ=0)
 S: distance from the analysis point to detector face;

> Take-off angle (α usually 15°)

- Detector position was fixed. You can only change this slightly by tilting your sample
- Sample tilt can reduce P/B (peak/background) ratio and increase spurious effects

Common artifacts from EDS detector

- Si escape peak (signal detection artifact)
 Detector is not a perfect sink. Incoming photon with energy E is not transformed into electronhole pairs but fluoresces a Si Kα X-ray with a 1.74k eV energy.
- Internal fluorescence peak (signal detection artifact)
 Incoming photons fluoresce atoms in the dead layer of the detector and result in Si Kα peak
- Sum peak (signal processing artifact) Sum peak occurs when the count rate exceeds the electronics' ability to discriminate all the individual pulses and so-called 'pulse pile-up'. Reduce the dead time!!

- Cu is everywhere
- Remember to remove the objective aperture before taking EDS signal
- Operate as close to zero tilt as possible

SH

EXPLORING INNER SPACE

VNE Soft and Hybrid Nanotechnology Experimental Resource

MATERIALS RESEARCH SCIENCE AND ENGINEERING CENTER

Coherent Bremsstrahlung (CB)

- Continuous bremsstrahlung spectrum usually happens bulk polycrystalline materials by electrons with lower energy (< 30 ekV)
- Within TEM, for single crystalline specimens, CB likely will occur.

Counts

1200

1000

800-

600-

400

200

 $\mathsf{E}_{\mathsf{CB}} = \frac{12.4\beta}{L(1 - \beta \cos(90 + \alpha))}$

- β: electron velocity divided by the velocity of light
- L: Lattice spacing in the beam direction
- $\boldsymbol{\alpha} {:} take-off angle of the detector$

Soft and Hybrid Nanotechnology Experimental Resource

Northwestern

Application of EDS

Identification of the elements and distribution

Elements distribution along grain boundary within a low alloy steel.

Revealing the La-rich and La-deficient within the solid electrolyte directly.

Soft and Hybrid Nanotechnology Experimental Resource

MIRSEC MATERIALS RESEARCH SCIENCE AND ENGINEERING CENTER

Key points/parameters for EELS

Cross-section differential

Cross-section differential of the inelastic scattering:

$$\frac{d^2\sigma}{d\Omega dE} \approx \frac{8a_0^2 R^2}{Em_0 v^2} * \left(\frac{1}{\theta^2 + \theta_E^2}\right) * \frac{df}{dE}$$

- σ : Cross-section of the inelastic scattering; Ω : solid angle;
- a_0 : Bohr radius, 0.53 Å;
- E: Electron loss energy
- m_0 : rest mass of electron;
- R: Rydberg energy, 13.6 eV;
- v: velocity of electrons
- θ_{E} : characteristic angle equaling approximately E/2E₀;
- E_0 : Electron energy of the incident electrons
- θ : scattering angle;
- df/dE: Generalized Oscillator Strength

Soft and Hybrid Nanotechnology Experimental Resource

Higher signal

Northwestern EXPLORING INNER SPACE

Energy-loss spectrum

- Zero loss peak (Very intense)
- Low loss regime containing the plasmon peak is relatively intense.
- The ionization edges are relatively low intensity compared to the background.
- Overall intensity drops rapidly with increasing energy loss, reaching negligible levels above \sim 2keV

EC RESEARCH SCIENCE EERING CENTER EXPLORIN

> Energy resolution

- Higher energy resolution can give you more details.
- The electron gun usually dictates the ultimate energy resolution. (W: 3eV; LaB6: 1.5eV; Cold FEG Gun: 0.35 eV)
- Monochromators can give you very high energy resolution but reduce the signals.
 (A)

Experimental Resource

AND ENGINEERING CENTER

• For dedicated STEM

Cross-section differential of the inelastic scattering:

EXPLORING INNER SPACE

SHVNE Soft and Hybrid Nanotechnology Experimental Resource

TEM-imaging mode (diffraction coupling)

If there is no objective aperture:

 $\beta \approx \frac{r_0}{I}$

 r_0 : maximum radius of the diffraction pattern in the focal plane of the spectrometer; typically \sim 5 µm L: camera length;

 $L \approx \frac{D}{M}$

D: distance from the projector crossover to the recoding plan \sim 0.5 μm M: magnification of the image in the recording plan

If M=10000, D=0.5 μ m, β is around 100mrad.

If there is an objective aperture:

 $\beta \approx \frac{d}{2f}$ (if d=30 µm, f=3 mm, β is around 5 mrads) d: diameter of the objective aperture; f: focal length of the objective lens;

> E Soft and Hybrid Nanotechnology Experimental Resource

RSEC

AND ENGINEERING CENTER

Northwestern

TEM/STEM diffraction mode (image coupling)

Collection angle is mainly limited by the entrance aperture $d_{aff} = 2\theta_{\rm p} - D - d$

$$\beta = \frac{\alpha_{eff}}{2} * \frac{2 \sigma_B}{b} = \frac{D}{D_A} * \frac{\alpha}{L}$$

 θ_B : Bragg angle

b: distance between 000 and hkl

 d_{eff} : effective aperture diameter

L: camera length on the recording plane

$$d_{eff} = \frac{d * D}{D_A}$$

D: distance from projector crossover to the recording plane (Varies) D_A : distance between the crossover and entrance aperture (typically 610 mm for Gatan EELS)

For example:

If D=500 mm, L=800mm, GIF aperture 5mm, β is around 5mrads.

Northwestern

EXPLORING INNER SPACE

MATERIALS RESEARCH SCIENCE AND ENGINEERING CENTER

Characteristic angle and cut-off angle

• Characteristic angle

$$\Theta_E \approx \frac{E}{2E_0}$$
 (E: electron energy loss; E_0 : incident electron energy)

* The characteristic scattering angles for core-loss electrons range from \sim 0.2 to 10 mrads.

*Collection angle $\beta > 2-3 \theta_E$; A smaller β will cut off intensity in spectrum

• Cut-off angle (above which the scattering intensity is zero)

 $\theta_c = (2 * \theta_E)^{\frac{1}{2}}$

*Be careful to calculate this angle in radians but not in milliradians.

*The characteristic cut-off angles for core-loss electrons range from \sim 25 to 200 mrads;

*Too large β will include many unwanted electrons.

Detection efficiency

- Ionization-loss electrons are very strongly forwardscattered.
- Detection efficiency of EELS is very high (50-100%)
- Detection efficiency of EDS is usually inefficient.

SH

NE

Experimental Resource

Spatial resolution

- In STEM/diffraction mode, the resolution is mainly limited by the size of the probe.
- In TEM imaging mode, the selecting aperture (e.g., spectrometer entrance aperture and its effective size at the plane of the specimen) is a limited factor.
- Delocalization which is the ejection of an inner-shell electron by the passage of a high-energy electron some distance from the atom is another limiting factor.

Diameter d₅₀ contains 50% of the inelastic intensity.

$$d_{50}^2 = (\frac{0.5\lambda}{\theta_E^{0.75}})^2 + (\frac{0.6\lambda}{\beta})^2$$

For energy loss E= 50 eV, d₅₀ is around 1 nm. For E= 300eV,
d₅₀ is around 0.4 nm.

That is why it is very challengeable for getting the atomic

resolution EELS map using light elements (e.g. C and B).

Soft and Hybrid Nanotechnology
 Experimental Resource

MRSEC MATERIALS RESEARCH SCIENCE AND ENGINEERING CENTER

- Identification of specific elements and concentration
- Identification of valence state of the elements.
- Determination of band gap, plasmon and other physics

related phenomenon...

•

Thank you for your attention!

Q.&A.

Soft and Hybrid Nanotechnology Experimental Resource

MRSEC N MATERIALS RESEARCH SCIENCE AND ENGINEERING CENTER

