Etching Systems in NUFAB

Shaoning Lu, Nasir Basit April 2020

Shaoning Lu, Ph.D. Research Associate Email: <u>shaoning.lu@northwestern.edu</u> Nasir Basit, Ph.D. NUFAB Director of Operations Email: <u>n-basit@northwestern.edu</u>

Outline

- Introduction—Etching in micro/nanofabrication
 - What does etching do?
 - Etch classification and features

NUFAB etch equipment

- Wet chemical fume hoods
- RIE
- DRIE
- Others: XeF₂ etch, O₂ plasma asher
- Incoming new system and useful systems in wish list
 - Automatic Acid Etch Station
 - New DRIE
 - Chlorine based ICP
 - Ion Mill

Etch Introduction

- Transfer nano/microscale pattern from one "masking" film to another film or bulk material
- Etch classification
 - Chemical Physical
 - Dry—Wet
 - Isotropic—Anisotropic

NUFAB NORTHWESTERN UNIVERSITY MICRO/NANO FABRICATION FACILITY

Wet Chemical Bay

—3 fume hoods for different wet processes

Chemical Process Capabilities

- #1: Si bulk etch with—KOH, TMAH (anisotropic), hot water bath available, 1-1.5um/min
- ▶ #2: SiO2 etch (HF 49% and BOEs), Gold etch, and etc.
- #3: Metal etch (Cr, Cu, Au, FeO, Pt, Al, Ni, etc.); Organic film strip or cleaning (Nanostrip)
- Takes care over 70% etch work in NUFAB

Au	28A/sec
Cu	~100-200nm/sec
Cr	40A/sec
FeO	50A/sec
SiO2 (wet thermal)	23nm/min (BOE 10:1) 100nm/min (BOE 5:1)

Dry Etch – RIE (Samco)

- 10 recipes available to users
- Fluorine based chemistry, versatile for many films: Si, SiO₂, Si₃N₄, poly-Si, etc.
- O₂ plasma for cleaning
- Parallel plate electrodes, ideally anisotropic, not that "anisotropic" as DRIE, works for certain range

Ar plasma for physical etch

1	P-Si (Fine) #1		1
	P_Si (Fine) #1	UNDER THE CONTRACT OF MANY	
2	r-Si (rine) #1	580 A/min	
3	P-Si (Fine) #2	900 Å/min	
4	Si Etch (Vertical Walls)	2950 Å/min	
5	SiO2 Etch Mask Formation	210 Å/min	
6	Polyimide	210 Å/min	
7	SiN Etch (CF4)	1000 Å/min	
8	SiN Etch	890 Ä/min	
9	SiO2 Etch (CF4)	270 Å/miin	
10	Chamber Clean		

Dry Etch—DRIE (STS) High Aspect Ratio Si Structures

- Bosch process— alternating etch and passivation cycles
- Straight side wall, highly anisotropic
- Feature depth—hundreds nanometers to 1mm
- Highly automated machine, easy to operate, but need careful pattern layout design for desired etch profile
- Fluorine based ICP process for submicron scale Poly-Si etch (under development on current DRIE)

NORTHWESTERN UNIVERSITY MICRO/NANO FABRICATION FACILITY

DRIE etch profiles

Custom DRIE process

- 3 standard recipes with different etch rate, ranging from ~2.5-15 um/min
- Arrays of nanoscale patterns at subzero platen temperature
- Pillars/mounds with gradual positive slope
- Extreme deep trench (600-1000um) with gradual slope and coating for easy PDMS demolding

Trench ~several um to hundreds um, custom array of hundreds nm dia. holes

Positively sloped pillar/mounds, up to tens-~300 um tall

Very small positively sloped extreme high aspect ratio trench, up to 600um—I mm deep

Other etching equipment

- O₂ plasma cleaner Samco PC300
- CF₄ etch (under development)

NOTAB NORTHWESTERN UNIVERSITY MICRO/NANO FABRICATION FACILITY XeF2 etcher –Si release, can etch other materials too

Incoming Osiris Automatic Acid Station

- Dry-in dry-out process
- Highly controlled process
- Much safer and no cleaning work for users

NUFAB IORTHWESTERN UNIVERSIT

- Lots of time saving for photomask and many other pattern etching
- Expandable in the future for more chemicals

Suggestion for New Capabilities

- NEW DRIE (to accommodate increasing use)
- ► ICP
 - Chlorine based ICP for metal etch
- Ion Mill

Conclusion

- NUFAB has a wide variety of choice for users' etch needs
- We are working toward more state-of-the-art equipment to serve nano/microfabrication in research
- Please feel free to contact staff for your application questions or process development

Thank you for watching our video.

