

Sample Preparations for High Quality TEM Analyses

Xiaobing Hu

Department of Materials Sciences and Engineering, Northwestern University

The NUANCE Center, Northwestern University

June 19, 2019

Outline

- > How to choose the suitable methods to make TEM samples?
- Crush Method
- > Ar Ion Milling Method
- Electrochemical Methods
- > Microtome
- Focus Ion Beam Milling
- Replica
- > Some specific complicated cases
- Cryo sample preparation

- **High Quality Electron Transparent Sample:**
- ✓ Very thin (less than 100 nm);
- ✓ Large flat electron transparent regions;
- ✓ No additional/foreign artifact;
- ✓ No contamination;

Only the duplication of the morphological features. Many other structural/chemical details are lost. Not covered here.

Not covered here.

How to choose the suitable methods to make TEM samples?

Everything which is in solid state can be prepared as TEM samples.

Soft and Hybrid Nanotechnology Experimental Resource

AND ENGINEERING CENTER

Northwestern EXPLORING INNER SPACE

Crush Method

Some representative applications:

- **Conventional powders samples with different sizes;**
- □ Very brittle bulk samples (intermetallic, quasicrystals...)

•

Advantages

- ✓ Very robust/efficient/economical;
- \checkmark No ion beam damage

Disadvantages

 May change the original morphological features;

NUANCE Atomic and Nanoscale Characterization Experimental Center

Soft and Hybrid Nanotechnology Experimental Resource

General steps:

- 1. If pristine powder size is in micrometer size, use the pestle and mortal to crush the powders;
- 2. Dispersed powders into alcohol;
- 3. Using ultrasonic method to distribute the original powders uniformly;
- 4. Transfer several drops on suitable TEM grids;

How to keep the internal boundaries of the microsphere powders?

E Northwestern EXPLORING INNER SPACE How to choose the TEM grids?

Particle size less than 10 nm

□ Particle size larger than 10 nm

•

Ultrathin Carbon Film on Lacey Support Films

Lacey Support Films

SHYNE Soft and Hybrid Nanotechnology Experimental Resource

Microstructural features of the W-Nb-O oxide.

Soft and Hybrid Nanotechnology Experimental Resource

Northwestern

Ar Ion Milling Method

Fischione 1050 TEM Mill

- From -150 °C to room temperature
- 0.1 V to 6 kV
- Beam size: 1.5 mm at 5 kV
- Milling angle range from 0 to 10 degree

SH

Advantages

- ✓ Very robust;
- ✓ Applicable to almost all the materials

Disadvantages

✓ Not found yet

Some representative applications:

- □ Various kinds of engineering alloys and compounds;
- Various kinds of thin film system which are not sensitive to air/water
- □ Powder samples with the size of micrometers;
- □ Samples with irregular shape with the size of micrometers (e.g. hair, copper wire....)

□

Soft and Hybrid Nanotechnology

Experimental Resource

MRSEC MATERIALS RESEARCH SCIENCE AND ENGINEERING CENTER

Gatan 691 PIPS

- Room temperature (No cold stage)
- 1.5 kV to 6 kV
- Beam diameter: 350μm to 800 μm
 FWHM at 5 kV
- Milling angle range from 0 to 10 degree

SH

 \sim NE

Advantages of PIPSTM II

- X,Y stage permits alignment of argon beams to region of interest on the sample (Very precise location)
- Improved collimated beam provides useable voltages as low as 100 volts for rapid and damage free preparation of FIB lamella

Soft and Hybrid Nanotechnology Experimental Resource

CIENCE ER EXPLORING INNER SPACE

- Cut thin slices (less than 1 mm) from the bulk sample; 1.
- **Polish the slices down to around 100 μm;**
- **3.** Punch into standard size (3 mm diameter);
- Continually polishing down to 30-50 µm by hand; 4.
- Dimpling down to around 10 μm; 5.
- 6. Perforation by Ar⁺ milling;

Linear Precision Saws

Soft and Hybrid Nanotechnology Experimental Resource

RSFC

AND ENGINEERING CENTER

Wire-Electrode Cutting

Northwestern EXPLORING INNER SPACE

OptiPrep™ Polishing System

*Desired sample angles are obtained

based on geometric orientation built

into the fixture.

Abrasive Slurry Saw

Low Speed Saw

- Cut thin slices (less than 1 mm) from the bulk sample; 1.
- 2. Polish the slices down to around $100 \mu m$;
- **3.** Punch into standard disk (3 mm diameter)*;
- Continually polishing down to 30-50 µm by hand;
- Dimpling down to around 10 μm; 5.
- 6. Perforation by Ar⁺ milling;

* If your slice is not in standard size, you need to use grids.

Disk Grinder System

Northwestern

EXPLORING INNER SPACE

U

Soft and Hybrid Nanotechnology **SH**_VNE Experimental Resource

AND ENGINEERING CENTER

- 1. Cut thin slices (less than 1 mm) from the bulk sample;
- 2. Polish the slices down to around 100 μ m;
- 3. Punch into standard disk (3 mm diameter)*;
- 4. Continually polishing down to 30-50 μm by hand;

SH

- 5. Dimpling down to around 10 µm;
- 6. Perforation by Ar⁺ milling;

* If your slice is not in standard size, you need to use grids.

Gatan 656 Dimple Grinder

Diameter of dimple wheel, **D** Diameter of the pit, **2r** Depth of the pit, **d** $d=r^2/D$

D can be 10, 15, 20, 25 mm;

VNE Soft and Hybrid Nanotechnology Experimental Resource

MRSEC MATERIALS RESEARCH SCIENCE AND ENGINEERING CENTER Northwestern

- 1. Cut thin slices (less than 1 mm) from the bulk sample;
- 2. Polish the slices down to around 100 μ m;
- 3. Punch into standard disk (3 mm diameter)*;
- 4. Continually polishing down to 30-50 μm by hand;
- 5. Dimpling down to around 10 μ m;
- 6. Perforation by Ar⁺ milling;

* If your slice is not in standard size, you need to use grids.

SH

Fischione 1050 TEM Mill

Model 1050 TEM Mill Milling Rates

The milling rates are based on the following milling parameters:

- Energy: 5 kV
- Number of ion sources: 2
- Beam size: 1.5 mm
- Beam angle: ± 10°
- Laser sensitivity: 15%

Material	µm/hour
Nickel	12.1
Tantalum	7.9
Aluminum	23.3
Titanium	15.7
Tungsten	7.1
Molybdenum	7.6
Stainless steel	11.3
Silicon	10.6

Main adjustable parameters:

- Voltage (0-6 kV);
- Beam angles (0-10 degree);
- Temperature (-150 °C to room temperature);

Soft and Hybrid Nanotechnology

MRSEC NO MATERIALS RESEARCH SCIENCE AND ENGINEERING CENTER E

Over perforation

SHYNE Soft and Hybrid Nanotechnology Experimental Resource

MRSEC MATERIALS RESEARCH SCIENCE AND ENGINEERING CENTER

Northwestern EXPLORING INNER SPACE

Dislocation dipole ? Two 60° dislocation?

Two edges of the former SF

b1=1/2<110>=1/6<211>+SF+ 1/6<12-1> 60° dislocation=30° dislocation+90° dislocation+SF b2=1/2<110> 60° dislocation

Atomic scale revealing the dissociation of dislocations and the interactions among dislocations.

SHYNE Soft and Hybrid Nanotechnology Experimental Resource

Ni₃Al foils

Unpublished work

EXPLORING INNER SPACE

Northwestern

Electrochemical Method

Suitable voltage and current;

• Low temperature (Li • Suitable electrolyte:

General steps:

- 1. Cut thin slices (less than 1 mm) from the bulk sample;
- 2. Polish the slices down to around 100 μ m;
- 3. Punch into standard disk (3 mm diameter);
- 4. Continually polishing down to 30-50 μm by hand;
- 5. Perforation using the electrochemical method;

Advantages

- ✓ Relatively fast/efficient;
- ✓ No additional ion beam damage;

Disadvantages

- ✓ Only samples having conductivity;
- ✓ Poor controllability;
- ✓ May lose the secondary phases;
- ✓ Low success rate;
- ✓ May introduce contamination;

Some representative applications:

Various kinds of engineering alloys;

Electrochemical twin-jet method

Extraction of secondary phases

Advantages

- **Relatively accurate composition for** \checkmark smaller particles (less than 10 nm); **Disadvantages**
- Not robust; \checkmark
 - Lose interfacial/orientation information;
 - **Poor controllability;**
 - Not good for high quality analyses;

Base(10)_NetCounts - Net Counts (101 Frame(s))

Soft and Hybrid Nanotechnology <u>S</u>HVNE **Experimental Resource**

MATERIALS RESEARCH SCIENCE AND ENGINEERING CENTER

In courtesy of Dr. Jeffery Lin Northwestern EXPLORING INNER SPACE

Microtome Method

- From -180 °C to room temperature
- Section thickness from several nanometers to 15 micrometers
- Glass knives and diamond knives

Leica UC7/FC7 Cryo-Ultramicrotome

SH

Advantages
✓ Very gentle/robust;
Disadvantages
\checkmark May introduce contamination within TEM columns:

Some representative applications:

Observations from the cross-section of the nanorod;

- □ Powder samples with the size of micrometers;
- □ Samples with irregular shape with the size of micrometers (e.g. hair, copper wire....)
- □ Biological samples

Soft and Hybrid Nanotechnology Experimental Resource

MRSEC MATERIALS RESEARCH SCII

Cross-section of Nanorod

SH

Soft and Hybrid Nanotechnology $\sim NE$ **Experimental Resource**

Northwestern AND ENGINEERING CENTER

EXPLORING INNER SPACE

Cross-sectional features of MnO₂ nanorod

Atomic scale nanostructual features within hollandite MnO₂ revealed along the cross section.

Unpublished work

Northwestern

EXPLORING INNER SPACE

Atomic and Nanoscale Characterization Experimental Center

Soft and Hybrid Nanotechnology Experimental Resource

FIB Method

- Five gas injection systems for etching/deposition ۲
- Dual beam ٠
- Bruker EDS ٠
- Raith ELPHY ion beam lithography (IBL) capabilities •
- Lift out tools for TEM and Atom Probe samples ۲

Some representative applications:

Cross-section of thin films particularly the water/air sensitive films;

□ Super hard materials and films (e.g. diamond, BN, SiC, Al₂O₃...)

□ Very precious/small/irregular bulk samples

RSFC

AND ENGINEERING CENTER

- □ Microsphere powder samples
- Precise locations pickup

Experimental Resource

Substrate: Solid electrolyte La₍₁₋ _{x)/3}Li_xNbO₃ (LLNbO)

Li content x=0.05, (111)_p

Thin film: Cathode material LiMn₂O₄ ; thickness 100nm

Used facility: HITACHI NB5000

Reasons: This thin film contains Li. It is better to avoid water/air.

Northwestern

EXPLORING INNER SPACE

Stepv

20.0um NB5000 5.0kV 4.9mm

SH

NE Soft and Hybrid Nanotechnology Experimental Resource

- **1.** Deposition Pt/C to protect the surface;
- 2. Lift out a thin slice;
- 3. Thinning the slice;
- 4. Using weak conditions to remove the beam damage;

MRSEC MATERIALS RESEARCH SCIENCE AND ENGINEERING CENTER

Atomic scale revealing the interfacial between solid electrolyte and cathode materials.

Unpublished work

Soft and Hybrid Nanotechnology Experimental Resource

Northwestern

Some specific complicated cases

SHVNE

Soft and Hybrid Nanotechnology **Experimental Resource**

AND ENGINEERING CENTER

Northwestern EXPLORING INNER SPACE

Some specific complicated cases

Dislocations in cross-section

Soft and Hybrid Nanotechnology Experimental Resource

RSE AND ENGINEERING CENTER Northwestern EXPLORING INNER SPACE

Preparation of electron transparent sample for micrometer spherical powders using PIPS \checkmark

General steps:

- Imbed the powders within resign;
- **Consolidation of the resign;** 2.
- Cutting slices with the thickness of around 100 µm; 3.
- Punch into standard disk with a diameter of 3 mm; 4.
- Polishing, dimpling, ion milling 5.

The boundary and interface information are kept.

SH

Soft and Hybrid Nanotechnology **Experimental Resource**

Atomic scale revealing the structural/chemical feature in the charged layer LiCoO₂ cathode materials.

EXPLORING INNER SPACE

Northwestern AND ENGINEERING CENTER

✓ How to make electron transparent samples for shells using PIPS?

General steps:

- 1. Crush the shells;
- 2. Pick up a small piece and make one flat surface;
- **3.** Bond the flat surface with the Mo grid;
- 4. Gently plashing/dimpling;
- 5. Gentle ion milling;

SH

Atomic scale revealing the defect configurations within aragonite structure in "good" pearl.

Unpublished work

Northwestern

EXPLORING INNER SPACE

MRSEC MATERIALS RESEARCH SCIENCE AND ENGINEERING CENTER

How to observe the passive film on stainless steel?

b a Glue Film Matrix 5 nm

SH

Zhang, et al, Nature Communications 9 (2018): 2559

Soft and Hybrid Nanotechnology VNE Experimental Resource

MRSEC

MATERIALS RESEARCH SCIENCE AND ENGINEERING CENTER

Foils

Hair

If carbon film is deposited on the Al foils, how to observe the interface between AI foil and carbon film?

Wire

Acknowledgements

Prof. Vinayak P. Dravid Dr. Paul Smeets Dr. Roberto Dos Reis

Thank you for your attention!

Q.&A.

Soft and Hybrid Nanotechnology Experimental Resource

MRSEC MATERIALS RESEARCH SCIENCE AND ENGINEERING CENTER

