SEM Microanalysis EDS, WDS, EBSD

Tirzah Abbott

Senior Microscopy and Imaging Specialist

Ben Myers

Director of Operations

Energy Dispersive X-ray Spectroscopy (EDS)

- Energy Dispersive X-ray Spectroscopy
- Energy Dispersive X-ray Spectroscopy
- Energy Dispersive Analysis of X-rays
- Wavelength Dispersive X-ray Spectroscopy
- Electrons in, X-rays out

Image from My Scope – Microscopy Australia

Northwestern

Qualitative EDS

- Identify peaks based on energy
- Mapping/linescans
- Software standards database

Quantitative EDS

- K ratio
 - $K = I_{sample} / I_{standard}$
 - C_{sample} = Kc_{standard}
- ZAF correction (matrix corrections)
 - Z Differences in atomic number
 - A differences in absorption of X-rays
 - F differences in production of secondary x-rays, or x-ray fluorescence
- Sample prep Flat, homogeneous, conductive, nonporous

Z Correction

- Backscattering
 - Higher mean atomic number = higher backscatter yield (BSE do not general X-ray)
 - If mean atomic number of the sample is higher than standard, X-ray intensities will be different
- Stopping Power (energy loss)

Absorption

- X-ray absorbed by sample
- Energy x-ray equal to ionization energy of an electron shell of another atom
- Depends on
 - Other elements ionization energy in the sample
 - Distance travels through sample before it escapes
- Correction for low Z elements = large
- Corrections for high Z elements = small

Absorption

X-ray on right under corrected for absorption

X-rays over corrected for absorption

*Light elements strongly absorbed by the specimen.

Fluorescence

- X-ray traveling through sample has energy E_x > E_c of element B
 - X-ray absorbed by atom B
 - Atom B de-excites
 - Characteristic X-ray emitted from atom B

 $E_{NiK\alpha} = 7.47 \text{ kV}$ FeK $\alpha \rightarrow E_c = 7.11 \text{ kV}$

Standards and Calibration

- Measure beam current or x-ray count rate on pure element
- Measure spectra from standards for element standards under same operating conditions
- AZtec has standard database
- Best that standards measured under same conditions

*EPIC has standards for most pure elements/materials. The best standards, if not pure standards, have similar compositions as the sample.

Mapping Artifacts

- No correction for background or overlapping peaks
 - Higher Z phases give higher background counts
- Aztec TrueMap
 - Differentiates peak overlaps and removes backgrounds

Figure: Artifacts can result if the element maps are not corrected for overlapping Characteristic X-ray peaks.

The good, bad and ugly of SEM-EDS

- Fast qualitative analysis, mapping
- Quant accuracy
 - With standards and 'good' sample 1-2% for major constituents
 - Standardless analysis 10-15% for major constituents
- Spatial resolution
 - Beam energy-dependent up to several microns
 - Low Z: 1-5 μm³
 - High Z: $0.2 1 \, \mu m^3$
- Energy resolution
 - >125 eV

Embedded particles

AZtec LayerProbe

- Thin film and layered sample
- Thickness and composition (2 nm – 2000 nm)
- Model defining layers composition and thickness
- System suggests operating conditions
- Experimental data compared to theoretical spectrum based on model
- Standards improve accuracy of data

Figure 1. A flake of MoS₂ on an SiO₂ substrate with EDS spectra and resulting layer thicknesses. Lang et al., 2015

Wavelength Dispersive X-ray Spectroscopy

- Micro-analysis ~10x more sensitive than EDS
 - Detection limit 0.01%
- Energy resolution ~13 eV
 - Separate peak overlaps
- Higher count rates on element
- High sensitivity for light element detection
- Standard based analysis

- Powder Sample containing CeLaNdBaPr
- Lots of heavily overlapped peaks in a small spectral range

- Separating characteristic x-rays by X-ray diffraction using a crystal of known lattice spacing d
- The angle of diffraction needed to collect X-rays of a particular wavelength is predicted using Bragg's Law

WDS Detectors

- Flow Proportional Counter (FPC)
 - Flowing P-10 (10% CH₄ balance Ar) Low Energy x-rays (<Fe Kα)
- Sealed Proportional Counter (SPC)
 - Sealed Xe gas Good for high Energy X-rays (>Fe Kα)
- Positioned in Series so high energy X-rays not measured by FPC pass to SPC.

WDS/EDS

- Extends Analytical capability of SEM close to that of an Electron Microprobe
- SEM with both ED and WD combines their strengths
 - ED for major elements
 - Fast analysis
 - Sample Overview
 - WD for overlaps and minor/trace elements
 - High Resolution Analysis
 - High Sensitivity Quantitative Analysis

Element	Data type	Weight%	Atomic%
Na	ED	2.28 +/- 0.17	2.09
Al	ED	9.26 +/- 0.16	7.23
Si	ED	31.27 +/- 0.24	23.46
к	ED	10.10 +/- 0.16	5.44
Са	ED	0.20 +/- 0.08	0.11
Fe	WD	0.07 +/- 0.01	0.03
0		46.82 +/- 0.27	61.65
Totals		100.00	100.00

Electron Backscatter Diffraction (EBSD)

Electron Backscatter Diffraction (EBSD)

Specimen requirements for EBSD

- Flat (<1 μm)
- Pristine surface free of mechanical damage and oxidation
- Known structure(s)
- Stable preparation (no carbon tape)
- Conductive (or use VP-SEM)

Questions?

Extra Slides

X-ray Emission

- Large λ low spatial resolution in SEM
 - Thin film
 - Low E_o
- Characteristic X-rays
 - Inner shell ionization element specific energy
- Bremsstrahlung
 - "Braking radiation" x-ray background

Northwestern

EDS Detectors

- Si(Li)
 - LN2 cooled
 - Limited count rates
 - Limited active area

- SDD
 - Peltier cooled
 - High count rates
 - Large area

Northwestern

EXPLORING INNER SPACE

EDS Mapping

- ED spectrum for each pixel
- Pixel dwell time faster than point analysis
 - Better for major elements
- Acquisition time depends on map pixel resolution
 - Long maps require no beam current shift
 - Beam stability harder to maintain on cFEG (Hitachi 4800/8030)

Figure: A combination map for phases in a sample of granite.

EDS Spectra

Intensity vs. Energy

channels

on AZtec)

٠

Peaks for each characteristic x-• ray of elements in sample

energy range and number of

•

Spectral Artifacts

- Spectral resolution
 - FWHM Width at half peak height
 - Process time improve spectral resolution
- Peak Overlaps
- Escape peaks
- Sum peaks

Ideal specimen satisfies 3 assumptions:

- Intensity differences between standard and element due to compositional differences and not surface roughness, size, shape, and thickness ("geometric factors")
- 2. Specimen is homogeneous over full extent of interaction volume.
- 3. Specimen is stable under beam and not altered by beam interaction (e.g. polymers and biological samples)

- Information from WDS and EDS combined in a single result
 - Uses same matrix correction algorithm for both EDS and WDS data

Element	Data type	Weig	ght%	Atomic%
Na	ED	2.28 +/-	0.17	2.09
Al	ED	9.26 +/-	0.16	7.23
Si	ED	31.27 +/-	0.24	23.46
к	ED	10.10 +/-	0.16	5.44
Са	ED	0.20 +/-	80.0	0.11
Fe	WD	0.07 +/-	0.01	0.03
0		46.82 +/-	0.27	61.65
Totals		100.00		100.00

