Principle and Application of FT-IR

Xinqi Chen, PhD
Research Associate Professor
Department of Mechanical Engineering
NUANCE-Keck-II Manager
Northwestern University
Safety:

- Never leave your samples in the facility after your session
- Report abnormal issues immediately
- Safety training on chemicals, compressed gas, LN, etc.

Acknowledgment:

Publications which result from research that made use of the Keck-II facility’s instruments should include the following acknowledgments:

“This work made use of the Keck-II facility of Northwestern University’s NUANCE Center, which has received support from the Soft and Hybrid Nanotechnology Experimental (SHyNE) Resource (NSF ECCS-1542205); the MRSEC program (NSF DMR-1720139) at the Materials Research Center; the International Institute for Nanotechnology (IIN); the Keck Foundation; and the State of Illinois, through the IIN.”
Outline

- Chemical bond and molecular vibration
- Instrumentation
- Data interpretation
- Methods
Why FT-IR?
Molecular Vibration-1

Covalent bond is not static.
Molecular Vibration-2

Stretching
(The bond length changes)

Bending
(The bond angle changes)
Spring Model of Chemical Bond

Infrared light and a molecule only interact when the dipole moment of the molecule changes due to vibration.

- Spring between two spheres
- Heteronuclear diatomic molecules: HCl, CO Infrared active
- Homonuclear diatomic molecules: O₂, H₂, N₂, and Cl₂ Infrared inactive
Bond Vibration Frequency

1. for a stronger bond (larger k value), wave number increases.

 As examples of this, in order of increasing bond strength compare:

 CC bonds: C-C (1000 cm$^{-1}$), C=C (1600 cm$^{-1}$) and C≡C (2200 cm$^{-1}$),

 CH bonds: C-H (2900 cm$^{-1}$), C=C-H (3100 cm$^{-1}$) and C≡C-H (3300 cm$^{-1}$),

2. for heavier atoms attached (larger m value), wave number decreases.

 As examples of this, in order of increasing reduced mass compare:

 C-H (3000 cm$^{-1}$)

 C-C (1000 cm$^{-1}$)

 C-Cl (800 cm$^{-1}$)

 C-Br (550 cm$^{-1}$)

 C-I (about 500 cm$^{-1}$)
Beer–Lambert Law

\[A_T = \varepsilon_1 b c_1 \]

- \(I_0 \) = Incident beam intensity
- \(I \) = Transmitted beam intensity
- \(A \) = Absorbance = \(- \log_{10} \frac{I}{I_0} \)
- \(b \) = Optical path length
- \(c \) = Solution Concentration (M/L)
- \(\varepsilon \) = Molar Absorptivity (L/M cm)

\[A = \log_{10} \frac{100}{\%T} \]

\[\%T = 100 \cdot \frac{I}{I_0} \]
Exploring the inner space…

Dispersive IR spectrometer

Data collection is very time consuming.
The Michelson interferometer produces interference fringes by splitting a beam of monochromatic light so that one beam strikes a fixed mirror and the other a movable mirror. When the reflected beams are brought back together, an interference pattern results.
Interference of Two Beams of Light
Interference Is a Superpositioning of Waves
Data Collection

S/B for transmittance
S-B for absorption
Location of Peaks in an IR Spectrum

Two General Regions in an IR Spectrum:

> 1400 cm⁻¹
Functional Group Region

< 1400 cm⁻¹
Fingerprint Region
Regions of FT-IR Spectrum

- Single bond stretch
- Triple bonds
- Double bonds
- Fingerprint region skeletal vibrations
- Bend
- Rock
Sample IR Spectrum

- 2785 cm⁻¹ CH₂ sym stretch
- 2850 cm⁻¹ CH₂ asym stretch
- 1485 cm⁻¹ CH₂ scissor
- 1250 cm⁻¹ CH₂ rock
- 1165 cm⁻¹ CH₂ wag
- 1750 cm⁻¹ C=O stretch
Sample IR Spectrum
Guide to Analyzing an IR Spectrum

2-methyl-1-pentene

NUANCE Center

Exploring the inner space...
Guide to Analyzing an IR Spectrum

2-propyn-1-ol

Wavenumber (cm$^{-1}$)

4000 3000 2000 1500 1000 500

NUANCE Center

Exploring the inner space...
Guide to Analyzing an IR Spectrum

acrylamide
Guide to Analyzing an IR Spectrum

ethyl benzyl ketone

NUANCE Center
Exploring the inner space...
Guide to Analyzing an IR Spectrum

How could you use IR to differentiate $\text{C}_4\text{H}_8\text{O}_2$ isomers?
Signal Intensity in an IR Spectrum

A more polar bond will have a stronger absorption than a less polar bond.

- most polar: O-H
- most intense
- O-C

- least polar: C-H
- least intense

N-H
Signal Intensity in an IR Spectrum

An alkene C=C stretch generally appears ~ 1650 cm$^{-1}$.

Asymmetric

1-heptene

Symmetric

3-heptene
Transmission Mode

- **Economical** – cells and mounts are generally inexpensive
- **Well established** – most traditional form of sample measurement
- **Excellent spectral information** – ideal for qualitative measurements
- **Great for quantitative work** – many standard operating procedures are based on transmission
Attenuated Total Reflection (ATR) Mode

<table>
<thead>
<tr>
<th>Crystal/Material</th>
<th>n_0</th>
<th>LWL, cm$^{-1}$</th>
<th>d_p (um)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Diamond/ZnSe</td>
<td>2.4</td>
<td>525</td>
<td>2.00</td>
</tr>
<tr>
<td>Germanium</td>
<td>4.0</td>
<td>780</td>
<td>0.66</td>
</tr>
</tbody>
</table>

$n_0 =$ refractive index of ATR crystal
LWL = long wave length cut-off
$d_p =$ depth of penetration in microns @ 1000 cm$^{-1}$ assuming sample refractive index of 1.5 and 45 degree angle of incidence.
ATR-2

Advantages:

- **Minimal sample preparation**—place the sample on the crystal and collect data
- **Fast and easy cleanup**—simply remove the sample and clean the surface of the crystal
- **Analysis of samples in their natural states**—no need to heat, press into pellets, or grind in order to collect spectra
- **Excellent for thick or strongly absorbing samples**—ideal for difficult samples like black rubber

Sample: Powder, Film, liquid
Diffuse Reflectance Infrared Fourier Transform Spectroscopy (DRIFTS)

What are the advantages of diffuse reflectance?

- **Little to no sample preparation** – just place in the sample cup
- **Fast and easy cleanup** – dump the cup and blow or rinse clean
- **No need for pressed KBr pellets or messy mulls** – samples can be run neat or diluted with KBr powder
Spectra of Trehalose with DRIFT mode
Polarization-Modulation Infrared Reflection-Absorption Spectroscopy (PM-IRRAS)
Micro FT-IR – Bruker LUMOS
Identify Unknown Substance

Exploring the inner space...
Exploring the inner space...

NUANCE Center

Mapping
Library Search

NUANCE Center

Exploring the inner space...
Summary

- FT-IR can identify chemical group, but not molecular structure.
- It is sensitive to chemical bond with big dipole moment.
- It is qualitative method, but quantitative with standard samples.
- There are ATR, transmission, DRIFT, and IRRAS mode.
- It is suitable for powder, film, liquid, gel, paint etc.
Thanks for your attention

Questions?